首页> 外文OA文献 >Line Profiles of Cores within Clusters. I. The Anatomy of a Filament
【2h】

Line Profiles of Cores within Clusters. I. The Anatomy of a Filament

机译:集群内核心的线轮廓。一,细丝的剖析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Observations are revealing the ubiquity of filamentary structures in molecular clouds. As cores are often embedded in filaments, it is important to understand how line profiles from such systems differ from those of isolated cores. We perform radiative transfer calculations on a hydrodynamic simulation of a molecular cloud in order to model line emission from collapsing cores embedded in filaments. We model two optically thick lines, CS(2-1) and HCN(1-0), and one optically thin line, N2H+(1-0), from three embedded cores. In the hydrodynamic simulation, gas self-gravity, turbulence, and bulk flows create filamentary regions within which cores form. Though the filaments have large dispersions, the N2H+(1-0) lines indicate subsonic velocities within the cores. We find that the observed optically thick line profiles of CS(2-1) and HCN(1-0) vary drastically with viewing angle. In over 50% of viewing angles, there is no sign of a blue asymmetry, an idealized signature of infall motions in an isolated spherical collapsing core. Profiles that primarily trace the cores, with little contribution from the surrounding filament, are characterized by a systematically higher HCN(1-0) peak intensity. The N2H+(1-0) lines do not follow this trend. We demonstrate that red asymmetric profiles are also feasible in the optically thick lines, due to emission from the filament or one-sided accretion flows onto the core. We conclude that embedded cores may frequently undergo collapse without showing a blue asymmetric profile, and that observational surveys including filamentary regions may underestimate the number of collapsing cores if based solely on profile shapes of optically thick lines.
机译:观察表明分子云中的丝状结构无处不在。由于纤芯通常嵌在细丝中,因此了解此类系统的线形轮廓与隔离式纤芯的线形轮廓之间的区别非常重要。我们对分子云的流体动力学模拟进行辐射传递计算,以便对嵌入细丝中的塌陷芯线发射进行建模。我们从三个嵌入式核心对两条光学粗线CS(2-1)和HCN(1-0)以及一条光学细线N2H +(1-0)进行建模。在流体动力学模拟中,气体自重,湍流和整体流动会在内部形成纤芯的丝状区域。尽管细丝分散较大,但N2H +(1-0)线表示纤芯内的亚音速。我们发现观察到的CS(2-1)和HCN(1-0)的光学粗线轮廓随视角的变化而急剧变化。在超过50%的视角中,没有蓝色不对称的迹象,这是孤立的球形塌陷岩心中跌落运动的理想特征。主要跟踪纤芯的轮廓,周围丝极少的贡献,其特征是系统地具有较高的HCN(1-0)峰强度。 N2H +(1-0)线不遵循此趋势。我们证明,由于从灯丝发出的光或单向吸积流到纤芯上,红色不对称轮廓在光学粗线中也是可行的。我们得出的结论是,嵌入的岩心可能经常塌陷而没有显示出蓝色的不对称剖面,并且如果仅基于光学粗线的剖面形状,则包括丝状区域在内的观测调查可能会低估塌陷岩心的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号